SCALAR CURVATURE AND WARPED PRODUCTS OF RIEMANN MANIFOLDS

F. DOBARRO AND E. LAMI DOZO

ABSTRACT. We establish the relationship between the scalar curvature of a warped product $M \times_f N$ of Riemann manifolds and those ones of M and N. Then we search for weights f to obtain constant scalar curvature on $M \times_f N$ when M is compact.

1. Introduction. Let $M=(M_m,g)$ and $N=(N_n,h)$ be two Riemann manifolds. For $f \in C^{\infty}(M)$, f>0 on M, we consider the warped product $M\times_f N=((M\times N)_{m+n},g+f^2h)$ and show the relationship between the scalar curvatures R on M, H on N and \tilde{R} on $M\times_f N$. This relationship is a nonlinear partial differential equation satisfied by a power of the weight f. In the case M is compact and connected, we obtain a geometric interpretation of the principal eigenfunction and eigenvalue of the canonical elliptic operator $-\Delta + R/2$, where Δ denotes the laplacian on M. Finally we consider the question of finding a weight f such that $M\times_f N$ has constant scalar curvature. This question is equivalent to find a positive solution to a nonlinear eigenvalue problem.

The notion of warped product $M \times_f N$ generalizes that of a surface of revolution. It was introduced in [B-O] for studying manifolds of negative curvature (cf. [Z] for other applications). The Riemann metric $\tilde{g} = g + f^2 h$ on $M \times_f N$ is defined for pairs of vector fields \tilde{X}, \tilde{Y} on $M \times N$ by

$$\tilde{g}(\tilde{X}, \tilde{Y}) = g(\pi_* \tilde{X}, \pi_* \tilde{Y}) + f^2(\pi(\cdot))h(\omega_* \tilde{X}, \omega_* \tilde{Y})$$

where π and ω are the canonical projections over M and N respectively.

We denote by Δ_g or Δ the laplacian (or Laplace-Beltrami) operator on (M_m,g) with local expression $\Delta_g u = \nabla^i \nabla_i u = |g|^{-1/2} \partial_i (g^{ij}|g|^{1/2} \partial_j u)$, for $u \in C^2(M)$ (cf. [Au1, B-G-M]). Thus $\Delta u = u''$ for a real valued function u on $M = \mathbf{R}$.

2. The equation. Given a metric g' = kg with $k \in C^{\infty}(M)$, k > 0 on M, g' is said to be *conformal* to g. It is known that the scalar curvature R' on (M_m, g') is related to R, the one on (M_m, g) , by the Yamabe equation

(Ya)
$$-\frac{4(m-1)}{m-2}\Delta_g u + Ru = R' u^{(m+2)/(m-2)}$$

where $k = u^{4/(m-2)}$, whenever $m \ge 3$ [4, Au1, p. 126].

Received by the editors July 15, 1986.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58G30, 53C25, 58C40; Secondary 47H12, 47H15

Key words and phrases. Nonlinear eigenvalue problem, principal eigenvalue and eigenfunction, bifurcation from infinity.

If we consider now the case of a warped product we have

THEOREM 2.1. Let R, H and \tilde{R} denote the scalar curvature on M, N and $M \times_f N$ respectively. Then the following equality holds:

(2.1)
$$-\frac{4n}{n+1} \Delta_g u + Ru + Hu^{(n-3)/(n+1)} = \tilde{R}u$$

where $u = f^{(n+1)/2}$.

PROOF. We write $\tilde{g} \equiv g + f^2 h = f^2 (f^{-2}g + h)$, so \tilde{g} is conformal to $\tilde{g} = f^{-2}g + h$ on $M \times N$ and $f^{-2}g$ is conformal to g on M.

Supposing $m \geq 3$, we apply (Ya) in M to obtain that f satisfies

(2.2)
$$-\frac{4(m-1)}{m-2}\Delta_g \eta + R\eta = \eta^{(m+2)/(m-2)} \hat{R}$$

with $\eta^{4/(m-2)} = f^{-2}$ and where \hat{R} denotes the scalar curvature on $(M_m, f^{-2}g)$. As $m+n \geq 3$, we use (Ya) in $M \times N$. Hence f also satisfies

(2.3)
$$-\frac{4(m+n-1)}{m+n-2} \Delta_{\widetilde{q}} \psi + \widetilde{R} \psi = \widetilde{R} \psi^{(m+n+2)/(m+n-2)}$$

with $\psi^{4/(m+n-2)} = f^2$, where $\overset{\approx}{R}$ denotes the scalar curvature on $((M \times N)_{m+n}, \overset{\approx}{g})$ and $\Delta_{\overset{\approx}{g}}$ the corresponding laplacian.

From $\psi \in C^{\infty}(M)$ we deduce that $\Delta_{\frac{\infty}{g}}\psi \equiv \Delta_{f^{-2}g+h}\psi = \Delta_{f^{-2}g}\psi$. Working in local coordinates

$$\Delta_{f^{-2}g}\psi = |f^{-2}g|^{-1/2}\partial_i[(f^{-2}g)^{ij}|f^{-2}g|^{1/2}\partial_i\psi]$$

with $|f^{-2}g| = \det(f^{-2}g_{ij}) = f^{-2m}|g|$ and $(f^{-2}g)^{ij} = f^2g^{ij}$. Hence

(2.4)
$$\Delta_{f^{-2}g}\psi = \eta^{-2m/(m-2)}|g|^{-1/2}\partial_i[\eta^2 g^{ij}|g|^{1/2}\partial_j\psi] = [\eta\Delta_g\psi + 2g^{ij}\partial_i\eta\partial_j\psi]\eta^{-(m+2)/(m-2)}.$$

On the other hand

$$\Delta_{a}(\eta\psi) = \eta \Delta_{a}\psi + \psi \Delta_{a}\eta + 2g^{ij}\partial_{i}\eta \partial_{j}\psi$$

and from (2.4) we get

(2.5)
$$\eta^{(m+2)/(m-2)} \Delta_{\underset{q}{\approx}} \psi = \Delta_g(\eta \psi) - \psi \Delta_g \eta.$$

We have that $\stackrel{\approx}{R} = \hat{R} + H$, because we consider the usual product of $(M_m, f^{-2}g)$ by (N_n, h) . Using this in (2.3), multiplying by $\eta^{(m+2)/(m-2)}$, we obtain from (2.5)

$$-\frac{4(m+n-1)}{m+n-2}(\Delta_g(\eta\psi)-\psi\Delta_g\eta)+\eta^{(m+2)/(m-2)}(\hat{R}+H)\psi$$

= $\tilde{R}\psi^{(m+n+2)/(m+n-2)}\eta^{(m+2)/(m-2)}.$

From (2.2) we arrive at

$$-\frac{4n}{(m+n-2)(m-2)}\psi\Delta_g\eta - \frac{4(m+n-1)}{(m+n-2)}\Delta_g(\eta\psi) + R\eta\psi + H\eta^{(m+2)/(m-2)}\psi$$
$$= \tilde{R}\psi\eta\psi^{4/(m+n-2)}\eta^{4/(m-2)}.$$

Recalling that $\psi^{4/(m+n-2)}\eta^{4/(m-2)}=1$, denoting $u=f^{(n+1)/2}$, replacing in terms of u in this last equality, then multiplying by $u^{1-n/(n+1)}$, we obtain

(2.6)
$$\begin{cases} -\frac{4n}{(m+n-2)(m-2)}u^{(m+n-1)/(n+1)}\Delta_g u^{-(m-2)/(n+1)} \\ -\frac{4(m+n-1)}{m+n-2}u^{1/(n+1)}\Delta_g u^{n/(n+1)} + Ru + Hu^{(n-3)/(n+1)} = \tilde{R}u. \end{cases}$$

For any $\alpha \neq 0$, $v \in C^{\infty}(M)$, v > 0 on M satisfies

(2.7)
$$\Delta_g v^{\alpha} = \alpha(\alpha - 1)v^{\alpha - 2} \nabla^i v \nabla_i v + \alpha v^{\alpha - 1} \Delta_g v.$$

Choosing first $\alpha = n/(n+1)$, then $\alpha = -(m-2)/(n+1)$ in (2.7) (for v = u) we obtain from (2.6) the desired result (2.1).

REMARK. Formula (2.1) holds even for m = 1, 2. For m = 1, it is easily deduced from a similar formula in [E-1]. For m = 2, the proof is similar but Yamabe equation is for the conformal change $g' = e^u g$:

$$-\Delta_q u + R = R' e^u$$

(cf. [M, Au1, p. 119]). (2.1) could also be deduced from a formula in [B-O, p. 26] but this formula is a consequence of an unwritten 15-term calculation and besides our method of proof is different.

3. Constant scalar curvature. Let the scalar curvatures R of M and H of N be fixed, we look for a weight $f \in C^{\infty}(M)$, f > 0, on M such that the warped product $M \times_f N$ has constant scalar curvature \tilde{R} and then which constants are attained. Taking account of $R \in C^{\infty}(M)$, $u = f^{(n+1)/2} \in C^{\infty}(M)$ and $H \in C^{\infty}(N)$, it follows easily from Theorem 2.1 that for \tilde{R} to be a constant λ , it is necessary that N have constant scalar curvature, still denoted H.

The simplest case is H = 0.

THEOREM 3.1. Let M be compact and connected. Suppose N of zero scalar curvature. Then there exists a weight f such that the scalar curvature \tilde{R} on $M \times_f N$ is a constant λ_1 . f is unique up to a positive multiplicative constant, λ_1 is unique and is given by

$$\lambda_1 = \inf \left\{ \int_M \left(\frac{4n}{n+1} |\nabla v|^2 + Rv^2 \right) \, dV; v \in H^1(M), \int_M v^2 \, dV = 1 \right\}$$

where $H^1(M) = \{v \in L^2(M); |\nabla v|^2 \equiv \nabla^i v \nabla_i v \in L^1(M)\}$ is the Sobolev space of order 1.

PROOF. From (2.1) we deduce that we search $\lambda \in \mathbf{R}$ and $u \in C^{\infty}(M)$, u > 0 on M such that

$$(3.1) Lu = \lambda u on M$$

where $Lu = -4n\Delta_g u/(n+1) + Ru$.

It is well known that this linear eigenvalue problem on M compact and connected has only one nonnegative solution u_1 with $\max_M u_1 = 1$; cf. [Au1, p. 137] (in fact $u_1 > 0$ on M) u_1 is the so-called *principal eigenfunction* of the elliptic operator L. The corresponding eigenvalue λ_1 is simple and is called the *principal eigenvalue*.

Hence $f = u_1^{2/(n+1)} > 0$ on M is the weight we are searching. Any other solution is of the form rf, $r \in \mathbb{R}_0^+$, because λ_1 is simple. The formula for λ_1 is classical.

The case of warping M with a circle, i.e. $M \times_f S^1$ gives a geometric interpretation of the principal eigenfunction u_1 of $-\Delta + R/2$ and its corresponding eigenvalue λ_1 , which in the special case of M 2-dimensional can be expressed in terms of the classical Gaussian curvature on M.

COROLLARY. Given a compact, connected $M=(M_2,g)$ with Gaussian curvature K and Laplace-Beltrami operator Δ , then the principal eigenfunction u_1 of the canonical elliptic operator $-\Delta+K$ holds the property that the warped product $M\times_{u_1}S^1$ has a scalar curvature constantly equal to the principal eigenvalue λ_1 of $-\Delta+K$.

PROOF. Take n=1 in (2.1). Recall that H=0 in S^1 and R/2=K in a 2-dimensional manifold.

The case $H \in \mathbb{R}$, H < 0 is similar to H = 0 because the half-line $\{(\lambda_1, ru_1), r > 0\}$ is deformed into a curve $\{(\lambda, f(\lambda)); \lambda < \lambda_1\}$:

THEOREM 3.2. Let $M=(M_m,g)$ be compact and connected. Suppose $N=(N_n,h)$ of constant negative scalar curvature H and assume $n\geq 3$. Let λ_1 denote the principal eigenvalue of $-4n\Delta_g/(n+1)+R$. Then for each $\lambda<\lambda_1$ there exists a unique weight $f=f(\lambda)$ such that $M\times_f N$ has constant scalar curvature λ . No constant $\geq \lambda_1$ may be curvature of $M\times_f N$ for any weight f.

PROOF. We look for positive solutions u in $C^{\infty}(M)$ of

$$(3.2) Lu + Hu^{\alpha} = \lambda u on M$$

where $Lu = -4n\Delta_q u/(n+1) + Ru$, $0 \le \alpha = (n-3)/(n+1) < 1$ (cf. (2.1)).

Let us still denote u_1 the positive eigenfunction of $Lu = \lambda u$ but with L^2 -norm 1, i.e. $\int_M u_1^2 dV = 1$. If u is a positive solution of (3.2), then multiplying (3.2) by u_1 and integrating by parts (L is selfadjoint), we obtain

$$\lambda_1 \int_M u u_1 \, dV + H \int_M u^\alpha u_1 \, dV = \lambda \int_M u u_1 \, dV.$$

Hence

$$(3.3) \qquad (\lambda - \lambda_1) \int_M u u_1 \, dV = H \int_M u^\alpha u_1 \, dV.$$

Then H < 0 necessarily gives $\lambda < \lambda_1$.

Let us fix $\lambda < \lambda_1$. As $0 \le \alpha < 1$, we have that

$$(L - \lambda I)tu_1 < |H|t^{\alpha}u_1^{\alpha}$$

for $\underline{t} \in \mathbf{R}^+$ small enough, so $\underline{t}u_1$ is a subsolution of (3.2). Also

$$(L - \lambda I)\bar{t}u_1 \ge |H|\bar{t}^\alpha u_1^\alpha$$

for $\bar{r} \in \mathbf{R}^+$ big enough, so we have a supersolution $\bar{t}u_1 \geq \underline{t}u_1$.

The operator $(L - \lambda I)$: $C^{2,\beta}(M) \to C^{\beta}(M)$ is an isomorphism and its inverse $(L-\lambda I)^{-1}$ is continuous for the C^0 -norm on $C^{\beta}(M)$ and the $C^{1,\beta}$ -norm on $C^{2,\beta}(M)$. Besides $(L - \lambda I)^{-1}$ is strongly positive, i.e. $w \in C^{\beta}(M)$, $w \geq 0$, $w \not\equiv 0$, implies $(L - \lambda I)^{-1}w > 0$ on M. So it extends uniquely to a compact map, still denoted

 $(L - \lambda I)^{-1}$ from C(M) into C(M), which is still strongly positive (cf. [Am]). For each $w \in C(M)$, $(L - \lambda I)^{-1}w$ is a weak solution of $Lu - \lambda u = w$.

The nonlinear compact and order preserving operator $v \to (L-\lambda I)^{-1}(|H||v|^{\alpha})$: $C(M)^+ \to C(M)^+$ leaves invariant the order interval $[\underline{t}u_1, \overline{t}u_1] \subset C(M)$, so it has a fixed point $u \in C(M)$, with $0 < \underline{t}u_1 \le u \le \overline{t}u_1$, i.e. $u = (L-\lambda I)^{-1}(|H||u|^{\alpha})$, hence by a classical bootstrap argument $u \in C^{\infty}(M)$; in particular u is a classical positive solution of (3.2) (cf. [Am] in the Neumann case for details). Finally the nonlinearity $|H|t^{\alpha}$ in (3.2) is such that t^{α}/t is strictly decreasing in t > 0; hence u is unique [L, Bere]. As $f = u^{2/(n+1)}$ we obtain the uniqueness.

The situation seems more complicated when H > 0.

THEOREM 3.3. Let $M=(M_m,g)$ be compact and connected. Suppose $N=(N_n,h)$ of constant positive curvature H and assume $n\geq 3$. Let λ_1 denote the principal eigenvalue of $-4n\Delta_g/(n+1)+R$. Then for each λ in some interval $(\lambda_1,\lambda_1+\delta)$ there exists a weight $f=f(\lambda)$ such that $M\times_f N$ has λ as scalar curvature. No constant $\leq \lambda_1$ may be curvature of $M\times_f N$ for any f.

PROOF. If u > 0 on M is a solution of (3.2) with H > 0, then (3.3) gives that $\lambda > \lambda_1$ is a necessary condition.

Denote $||u|| = \max_M |u|$, $v = u/||u||^2$ for $u \neq 0$, i.e. $u = v/||v||^2$. We will obtain solutions as a bifurcation from infinity near $\lambda = \lambda_1$ (cf. [**R-2**]). Multiplying our equation (3.2) by $1/||u||^2$, replacing by v, we are reduced to finding positive solutions of

(3.4)
$$Lv + av = \lambda v - H||v||^{2(1-\alpha)}v^{\alpha} + av$$

where $\lambda \in \mathbf{R}$ is a parameter and $a \in \mathbf{R}^+$ is a fixed number chosen big enough so that the operator $(L+aI) \colon C^{2,\beta}(M) \to C^{\beta}(M)$ is an isomorphism with positive inverse. Hence, as in the preceding proof, $(L+aI)^{-1} \colon C(M) \to C(M)$ is a linear compact strongly prositive operator such that $(L+aI)^{-1}v > 0$ on M if $v \geq 0$, $v \not\equiv 0$ on M.

We now search for pairs $(\lambda, v) \in \mathbf{R} \times C(M)$ with v > 0 on M, solutions of

(3.5)
$$v = \mu(L+aI)^{-1}v - H(L+aI)^{-1}f(v)$$

where $\mu = \lambda + a$, H > 0, and $f(v) = \|v\|^{2(1-\alpha)}|v|^{\alpha}$. We easily see that $H(L+aI)^{-1}f(v) = o(\|v\|)$ in C(M) for $\|v\|$ near 0. Moreover from $Lu_1 = \lambda_1 u_1$, it follows that $\mu_1 = \lambda_1 + a$ is a simple characteristic value of the compact map $(L+aI)^{-1}$. Then by the Rabinowitz bifurcation theorem [R-1], there exists a maximal connected closed subset C_{μ_1} of

$$S = \operatorname{adh}_{\mathbf{R} \times C(M)} \{ (\lambda, v) \text{ solutions of } (3.5) \text{ with } v \neq 0 \}$$

such that $(\mu_1, 0) \in \mathcal{C}_{\mu_1}$ and either

(i) C_{μ_1} is bounded in $\mathbf{R} \times C(M)$ or

(ii) C_{μ_1} meets $(\hat{\mu}, 0)$ with $\mu_1 \neq \hat{\mu} \in \{\lambda + a; \lambda \text{ eigenvalue of } L\}$.

We write $v = \gamma u_1 + w$, with $\gamma = v(x_o)$, where $u_1(x_o) = ||u_1||$ and $w(x_o) = 0$. For $\xi > 0$, $0 < \eta < 1$, the open sets in $\mathbf{R} \times C(M)$: $K_{\xi,\eta}^+, K_{\xi,\eta}^-$ defined by

(3.6)
$$K_{\xi,\eta}^{\pm} = \{ (\mu, v) \in \mathbf{R} \times C(M); |\mu - \mu_1| < \xi, \pm \gamma < \eta \|v\| \}$$

satisfy both $K_{\xi,\eta}^{\pm} \cap \mathcal{C}_{\mu_1} \neq \emptyset$ for ξ small enough as in Theorem 1.25 in [R-1]. Consequently the maximal connected closed subset (or continuum) of \mathcal{C}_{μ_1} contained

in $\{(\mu, \gamma u_1 + w); \gamma > 0\} \cup \{(\mu_1, 0)\}$ is nontrivial; we denote it as $\mathcal{C}_{\mu_1}^+$. Besides from $H(L + aI)^{-1}f(v) = o(\|v\|)$ we deduce that $\|w\| = o(\gamma)$ near $\gamma = 0$, so $v = \gamma u_1 + w \in \mathcal{C}_{\mu_1}^+$ is (strictly) positive on M for $\gamma > 0$ small enough.

We have then obtained a "branch" of C(M)-solutions (μ, v) , v > 0 on M of (3.5). Going back to $u = v/\|v\|^2$, $\lambda = \mu - a$, we have weak C(M)-solutions of (3.2): (λ, u) for λ near λ_1 , u > 0 on M, $\{\|u\|\}$ unbounded. By a regularity argument, each u is a C^{∞} classical solution and by the necessary condition we have $\lambda > \lambda_1$.

REMARK 1. The nonlinearity $v \to (L+aI)^{-1} f(v) = ||v||^{2(1-\alpha)} (L+aI)^{-1} (|v|^{\alpha})$ is not always differentiable for ||v|| near 0, so we cannot directly apply the results in [R-1, 2].

REMARK 2. The operator $F(\mu, v) = (L + aI)^{-1}(\mu v - Hf(v))$, H > 0, generally transforms a positive v into a nonpositive $F(\mu, v)$, so some known results on maps of cones into cones $[\mathbf{L}, \mathbf{T}]$ do not apply. More precisely, when N is 3-dimensional, (3.2) can be written as

$$(3.7) \qquad (-3\Delta_q + RI - \lambda I)u = -H$$

and Theorem 3.3 is a consequence of the antimaximum principle (cf. [C-P]) which says that $\lambda > \lambda_1$ and near λ_1 implies that negative data -H on M gives a positive solution u, on the contrary of the maximum principle.

Let us denote

$$C_{\infty} = \{(\lambda, u); u \ge 0, u \ne 0, (\lambda + a, u/\|u\|^2) \in C_{\mu_1}^+\} \subset \mathbf{R} \times C(M)^+,$$

the nonnegative weak C(M)-solutions bifurcating from infinity. We know now that H > 0 fixed implies that u > 0 for $\lambda > \lambda_1$, λ near λ_1 . We can say more on ||u|| in \mathcal{C}_{∞} .

THEOREM 3.4. Let M, N and λ_1 be as in Theorem 3.3. For any $0 < \varepsilon < A$, the set $\{(\lambda, u) \in \mathcal{C}_{\infty}; \ \lambda_1 + \varepsilon \leq \lambda \leq \lambda_1 + A\}$ is bounded in $\mathbf{R} \times C(M)$.

PROOF. Suppose not. Then there exists a sequence $(\lambda_n, u_n) \in \mathcal{C}_{\infty}$ with $\lambda_n \in [\lambda_1 + \varepsilon, \lambda_1 + A]$, $u_n \geq 0$ on M, $u_n \neq 0$, $\lim_n \lambda_n = \lambda$ and $\lim_n ||u_n|| = +\infty$, which satisfies

$$|u_n/||u_n|| = (\lambda_n + a)(L + aI)^{-1}(u_n/||u_n||) - H(L + aI)^{-1}(u_n^{\alpha}/||u_n||).$$

 $(L+aI)^{-1}$: $C(M) \to C(M)$ being compact we may suppose, up to a subsequence, that $\lim_n (L+aI)^{-1}(u_n/\|u_n\|) = \tilde{u}$ in C(M). From $\lim_n (u_n^{\alpha}/\|u_n\|) = 0$ in C(M), we obtain that $u_n/\|u_n\|$ tends to some u in C(M), $u \ge 0$, $\|u\| = 1$, so we have

$$u = (\lambda + a)(L + aI)^{-1}u$$

i.e., by regularity properties, $-4n\Delta u/(n+1) + Ru = \lambda u, \ u \ge 0, \ u \ne 0$, hence $u = u_1$ and $\lambda = \lambda_1$ by uniqueness. This contradicts $\lambda \ge \lambda_1 + \varepsilon$.

REMARK. If the set C_{∞} meets $(\hat{\mu}, 0) \in \mathbf{R} \times C(M)$ so does $C_{\mu_1}^+$. Then $\hat{\mu} \neq \mu_1$ and $\hat{\mu}$ is necessarily a characteristic value of $(L + aI)^{-1}$ (cf. [R-1]). Hence $\hat{\mu} = \hat{\lambda} + a$, $\hat{\lambda} > \lambda_1$, $\hat{\lambda}$ an eigenvalue of $-4n\Delta/(n+1) + R$. We would then have a sequence $(\mu_k, v_k) \in C_{\mu_1}^+$, such that $\lim_k \mu_k = \hat{\mu}$, $\lim_k v_k = \lim_k u_k/\|u_k\|^2 = 0$ in C(M), $v_k \neq 0$, i.e. $(\lambda_k, u_k) \in C_{\infty}$, with $\lambda_k = \mu_k - a \geq \lambda_1 + \varepsilon$, $\{\lambda_k\}$ bounded and $\lim_k \|u_k\| = +\infty$, contradicting Theorem 3.4. Then C_{∞} never meets some $(\lambda, 0)$.

For n=3, H>0 we are able to characterize the case that for any $\lambda>\lambda_1$ there is a $u(\lambda)>0$ on M with $(\lambda,u(\lambda))\in\mathcal{C}_{\infty}$.

THEOREM 3.5. Let M, N and λ_1 be as in Theorem 3.3 with dim N = 3. Then any constant $\lambda \in (\lambda_1, \infty)$ is scalar curvature of $M \times_f N$ for some weight f if and only if the scalar curvature R on M is constant.

PROOF. If R is constant and $\lambda > \lambda_1$, $u(\lambda) = H/(\lambda - \lambda_1)$ is a solution of (3.7), hence $f = u^{1/2}$ is a constant weight which gives λ as scalar curvature on $M \times_f N$.

Conversely, suppose that for each $\lambda > \lambda_1$ there corresponds a weight f i.e. a solution u of (3.7). This means for $\lambda = \lambda_k$ (k > 1) an eigenvalue of the selfadjoint operator $-3\Delta_g + R$, that the second member in equality (3.7) is orthogonal to the corresponding eigenspace. Hence H is orthogonal to all eigenfunctions except the principal one u_1 , so $H = tu_1$ with t > 0 by the completeness of an orthonormal system of eigenfunctions, i.e. u_1 is constant and (3.7) with $u = u_1$ gives R constant.

Ejiri proves in [E-2] that there exist countable immersions of $S^1 \times S^n$ into S^{n+2} such that $S^1 \times S^n$ is a warped product of constant scalar curvature n(n+1) with respect to the induced metric.

On one hand, if we consider equation (2.1) in $S^1 \times S^n$, we have R = 0 on S^1 and H = n(n-1) on S^n with the usual metric. So [**E-2**] gives a countable number of positive solutions of

(3.8)
$$-\frac{4n}{n+1}u'' + Hu^{(n-3)/(n+1)} = n(n+1)u.$$

In particular for n = 3, this equation becomes

$$(3.9) -3u'' - 12u = -H$$

with H = 6.

On the other hand, equation (3.7) reduces on $S^1 \times S^3$ to

$$(3.10) -3u'' - \lambda u = -H.$$

This last equation has a unique solution $u = u(\lambda)$ for $\lambda > \lambda_1$, λ not an eigenvalue. But $\lambda = 12$ is an eigenvalue of (-3) times the laplacian on S^1 , the eigenvalues being $\{\lambda_k = 3(k-1)^2, k = 1, 2, ...\}$, so the countable solutions of (3.9) given in [**E-2**] appear for $\lambda = \lambda_3$. But then we have uncountable positive solutions of (3.10) for $\lambda = \lambda_k$, k > 1, they are

$$(3.11) v = H/\lambda_k + tu_k$$

where $-3u_k'' = \lambda_k u_k$ and |t| small enough so that v is positive. We have proved

THEOREM 3.6. Let M, N and λ_1 be as in Theorem 3.3 with dim M=1 and dim N=3. Given an eigenvalue λ_k , k>1, of $-3\Delta_g$ there exist uncountable weights f such that $M\times_f N$ has λ_k as scalar curvature.

REMARK. The $u=f^2$ from this theorem are secondary bifurcations of the branch $\{H/\lambda\}$ of solutions considered up to now, at points $\lambda=\lambda_k$. In the case $M=S^1$ and $N=S^n$ with n>3, the curvature on $S^1\times_f S^n$ given in [E-2] is n(n+1) with $u=f^{(n+1)/2}$ a solution of (3.8). This constant n(n+1) is far from the scalar curvatures obtained from Theorem 3.3 which are near zero, i.e. our solutions of (2.1) and those in [E-2] on $S^1\times S^n$ seem to be of different type.

Theorem 3.2 still holds for N of dimension 2 with a different proof inspired from [C-R-T].

REFERENCES

- [Am] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620-709.
- [Au1] T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, A Series of Comprehensive Studies in Mathematics 252, Springer, Berlin.
- [Au2] ____, Métriques Riemanniennes et courbure, J. Differential Geom. 4 (1970), 383-424.
- [Bere] H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques, J. Funct. Anal. 40 (1981), 1-29.
- [B-G-M] M. Berger, P. Gauduchon, and E. Mazet, Le spectre d'une variété Riemannienne, Lecture Notes in Math., vol. 194, Springer, 1971.
- [B-O] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
- [C-P] Ph. Clément and L. A. Peletier, An anti-maximum principle for second-order elliptic operators, J. Differential Equations 34 (1979), 218-229.
- [C-R-T] M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular nonlinearity, MRC Report 1680, 1976.
- [E-1] N. Ejiri, A negative answer to a conjecture of conformal transformations of Riemann manifolds, J. Math. Soc. Japan 33 (1981), 261-266.
- [E-2] ____, Some compact hypersurfaces of constant scalar curvature in a sphere, J. Geom. 19 (1982), 197-199.
- [L] P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), 441-467.
- [M] J. Moser, On a nonlinear problem in differential geometry, Dynamical Systems, M. M. Peixoto (ed), Academic Press, New York, 1973, pp. 273-280.
- [R1] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513.
- [R2] _____, On bifurcation from infinity, J. Differential Equations 14 (1973), 462-475.
- [T] E. E. L. Turner, Positive solutions of nonlinear eigenvalue problems, C.I.M.E. Varenna, 1974, pp. 212-239.
- [Y] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21-37.
- [Z] S. Zucker, L₂ cohomology of warped products and arithmetic groups, Invent. Math. 70 (1982), 169-218.

DEPARTAMENTO DE MATEMÁTICA, FCEYN, UNIVERSIDAD DE BUENOS AIRES, BUENOS AIRES, ARGENTINA

INSTITUTO ARGENTINO DE MATEMÁTICA (CONICET), VIAMONTE 1636, 1055 BUENOS AIRES, ARGENTINA